
1

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

©2003 IDesign Inc. All rights reserved

.NET Component-Oriented
Development

Juval Löwy
www.idesign.net

About IDesign

n .NET architecture consulting, training and process improvement
n Comprised of leading world-class experts

l Authors, speakers, veterans
l Work closely with Microsoft

Ù Strategic reviews

ÙHigh end resource for the local office

n Community involvement
n Multiple awards
n www.idesign.net

2

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

IDesign Customers (Partial)

n IDesign president, chief architect
n Microsoft's Regional Director for the Silicon Valley
n Authored

l Programming .NET Components (2003, O’Reilly)
l COM and .NET Component Services (2001, O’Reilly)

n Participates in the .NET design reviews
n Contributing editor and columnist to CoDe and VS Magazine

l Publishes at MSDN and other magazines
n Speaker at the major international software development conferences
n Recognized Software Legend by Microsoft

About Juval Löwy

3

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Agenda

n Component-oriented programming
l What, why, how of components
l Component-oriented vs. object-oriented

n Core principles of component-oriented development
l Definition
l Using .NET

n Component-oriented development process

Agenda

n .NET future trends
l Return of the rich clients
l Speculated timelines
l ClickOnce
l Indigo

n Q&A panel

4

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

The Vision:

Why Components

n Maintenance
l Decoupling clients from objects

n Reusability
n Extensibility
n Robustness
n Scalability
n Time to market

l Product is a particular way of composing
a set of generic components

5

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

MS Component Technology Evolution

n Static libraries - 1981
l .lib file

n Dynamically loaded libraries - 1985
l Functions exported

as ordinal numbers in .dll
n DDE - 1990
n DLL with extensions - 1992

l Exporting C++ classes
in MFC

MS Component Technology Evolution

n OLE 1.0 - 1993
l Oriented towards

Office applications
n OLE 2.0 - 1994

l AKA COM
n DCOM - 1995

l Distribution
l Multithreading
l Security

n .NET - 2002

6

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

What is A .NET Component?

n A single class
l .NET classes are binary components
l Unlike traditional OO classes or COM objects

n Assembly is only packaging unit
l Typically contains related interacting components
l Treated often as single logical component

n An object is an instance of a component
l Similar to OO
l Sometimes referred to as ‘server’ (C/S model)

What is Component Client?

n Client is any entity uses the component
l Typically other components

n Client can be in:
l Same logical and physical unit
l Same logical but not physical unit
l Separate logical and physical unit

n Client code should not assume anything about packaging

ObjectClient

7

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Perspectives

n Component library vendor
l Develops class libraries and frameworks
l Machine-oriented

n Application vendor
l Develops applications
l Uses frameworks
l Application-oriented

Component-Oriented vs.
Object-Oriented

n Building blocks vs. monolithic applications
l OO focuses on relationship between classes
l CO focuses on interchangeable code modules

ÙModules work independently

ÙDeveloper not required to know module internals

n Fundamental difference in final application view

8

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

n Traditional object-oriented
l Logic factored to many fine-grained classes
l Once compiled, result is monolithic binary
l All classes share same physical deployment unit
l All classes share same process

Ù Same address space

Ù Same security privileges

l Shared source files
Ù Single implementation language

l Change made to one class can trigger massive re-linking
ÙRetesting
ÙRedeployment

Component-Oriented vs.
Object-Oriented

n Component-oriented
l Application comprises a collection of interacting

binary components
n Particular binary component may not do much

l Can be general-purpose component
l Can be highly specialized

n Requirements implemented by gluing individual components
l Component-enabling technologies provide infrastructure to

connect binary components
ÙCOM, J2EE, CORBA, .NET

l Distinct in ease of use

Component-Oriented vs.
Object-Oriented

9

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

n OO provides little support for run-time aspects
l Multithreading and concurrency management
l Security
l Distribution
l Deployment
l Version control

n CO technologies support run time aspects
l Developers focus on business problem instead of

infrastructure

Component-Oriented vs.
Object-Oriented

Interfaces vs. Inheritance

n OO analysis and design
l Model applications as complex class hierarchies
l Approximate reality via specialization
l Reuse via inheritance

n Inheritance is white-box reuse
l Changing members
l Overriding
l Synchronization

n White-box reuse doesn’t allow economy of scale
n Limits adoption of third-party frameworks

10

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Interfaces vs. Inheritance

n CO analysis and design
l Components interact via interfaces
l Interfaces are contracts between components and clients
l Interface is the basic unit of reuse

n CO programming promotes black-box reuse
l Absolute encapsulation

Why Binary Components

n Treat components like Legos
l Adding and removing

n Containing changes
l No recompilation or redeployment
l Available immediately
l Even while client is running

n Reduce cost of long-term maintenance
n Component libraries

11

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Core Principles of CO Development

n Separation of interface and implementation
n Binary compatibility
n Language independence
n Location transparency
n Concurrency management
n Version control
n Component-based security

Core Principles of CO Development

n Evolving principles
n Genuine principle or feature of the component technology
n Finer principles are possible

l Events and callbacks
l Serialization
l Transaction management
l Extensible component-services

n Adherence is key for maintainability, quality, TTM

12

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Separation of Interface
from Implementation

n Basic unit of use is binary-compatible interface
n Interface provides abstract service definition

l OO places object at center
n Interface is grouping of logically related method
n Interface are contract between client and service provide
n Vendors free to provide own interpretation of interface
n Interface is implemented by black box binary component

n Client only needs interface definition and binary component
implementing it
l Indirection allows replacing implementation
l Minimizing changes to client
l Objects can evolve

n Can implement interface using traditional OO
l Resulting class hierarchies usually simpler

n Interfaces enable reuse
l Generic engineering principle
l Why OO failed on its promise of reuse

Separation of Interface
from Implementation

13

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Interfaces Vs. Abstract Classes

n Interfaces are not the same as abstract classes
l Abstract class can still have implementation
l Class can derive from only one base class
l Class can derive from multiple interfaces
l Abstract class can derive from any other class or interface(s)
l Interface can only derive from other interfaces
l Abstract class can have non-public members
l Abstract class can have constructors static members and

constants
n Differences are deliberate to provide for a formal public contract

.NET Interfaces

n Interfaces can only derive from other interfaces
n Interface can derive from multiple other interfaces

l Unlike COM
n All interface methods are public

l Contract semantics

14

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

.NET Interfaces

n Subclass implementation must be public
n Must implement all methods in interface derivation chain

public interface IMyInterface
{

void Method1();
void Method2();
void Method3();

}

public class MyClass : IMyInterface
{

public MyClass(){}
public void Method1(){}
public void Method2(){}
public void Method3(){}

}

.NET Interfaces

n Can derive from multiple interfaces

public interface IMyInterface1
{

void Method1();
}
public interface IMyInterface2
{

void Method2();
}

public class MyClass : IMyInterface1,IMyInterface2
{

public MyClass(){}
public void Method1(){}
public void Method2(){}

}

15

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

.NET Interfaces

n Can still derive from one concrete class, in addition to interfaces
l Must be first in derivation chain

public interface IMyInterface
{}
public interface IMyOtherInterface
{}
public class MyBaseClass
{}
public class MySubClass : MyBaseClass,IMyInterface,IMyOtherInterface
{}

.NET Interfaces

MyClass obj = new MyClass();
obj.Method1();

//Implicit cast
IMyInterface obj = new MyClass();
obj.Method1();

n Declare interface type and instantiate it with a class instance:

n Client can program directly against the object:

l Not recommended: should separate interface from
implementation

16

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

.NET Interface-Based Programming

n Client-side programming:
l Program against interface, not object
l Never assume the object support an interface

ÙUse try/catch or as

SomeType obj1;
IMyInterface obj2;

/* Some code to initialize obj1 */
obj2 = obj1 as IMyInterface;
if(obj2 != null)
{

obj2.Method1();
}
else
{

//Handle error in expected interface
}

.NET Interface-Based Programming

n Server-side programming:
l Provide explicit interface member implementation

n Explicit implementation cannot be public
l Or have any visibility modifier at all

public interface IMyInterface
{

void Method1();
void Method2();

}

public class MyClass : IMyInterface
{

public MyClass(){}
void IMyInterface.Method1(){}//explicit implementation
void IMyInterface.Method2(){}//explicit implementation

}

17

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

.NET Interface-Based Programming

n Explicit implementation forces client to program against
interface, not object

IMyInterface obj1 = new MyClass();
obj1.Method1();

//This does not compile:
MyClass obj2 = new MyClass();
obj2.Method1();

.NET Interfaces and Subclasses

n Can mix class hierarchy and interfaces
public interface ITrace
{

void TraceSelf();
}
public class A : ITrace
{

public virtual void TraceSelf(){Trace.WriteLine("A");}
}
public class B : A
{

public override void TraceSelf(){Trace.WriteLine("B");}
}
public class C : B
{

public override void TraceSelf(){Trace.WriteLine("C");}
}

ITrace trace = new B();
trace.TraceSelf();
//output: "B"

18

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

n When factoring interface, think always in terms of reusable
elements

n Example: a dog interface
n Requirements

l Bark
l Fetch
l Veterinarian clinic registration number
l A property for having received shots

Interfaces Factoring and Design

public interface IDog
{

void Fetch();
void Bark();
long VetClinicNumber{ get; set; }
bool HasShots{ get; set; }

}

public class Poodle : IDog
{…}

public class GermanShepherd : IDog
{…}

n Could define IDog

n This interface is not well factored
l Bark() and Fetch() are more logically related to each other

than to VetClinicNumber and HasShots

Interfaces Factoring and Design

19

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

n Better factoring:
public interface IPet
{

long VetClinicNumber{ get; set; }
bool HasShots{ get; set; }

}
public interface IDog
{

void Fetch();
void Bark();

}
public interface ICat
{

void Purr();
void CatchMouse();

}
public class Poodle : IDog,IPet
{…}

public class Siamese : ICat,IPet
{…}

Interfaces Factoring and Design

public interface IMammal
{

void ShedFur();
void Lactate();

}

public interface IDog : IMammal
{

void Fetch();
void Bark();

}

public interface ICat : IMammal
{

void Purr();
void CatchMouse();

}

Interfaces Factoring and Design

n If operations are logically related, but repeated, factor to hierarchy
of interfaces

20

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Interface Factoring Metrics

n Interface factoring results in interfaces with fewer members
n Balance out two counter forces

l Too many granular interfaces Vs few complex, poorly
factored interfaces

n Just one member is possible, but avoid it
l Dull facet
l Too many parameters
l Too coarse: should be factored into several methods
l Refactor into an existing interface

n Optimal number 3 to 5
n No more than 20 (12)

Interface Factoring Metrics

n Ratio of methods, properties and events
l Interfaces should have more methods than properties
l Just-enough-encapsulation
l Ratio of at least 2:1
l Exception is interfaces with properties only

Ù Should have no methods

l Avoid defining events

21

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

.NET Factoring Metrics

n 300+ interfaces examined
n On average, 3.75 members per interface
n Methods to properties ratio of 3.5:1
n Less than 3 percent of the members are events
n On average, .NET interfaces are well factored

.NET and The Separation

n .NET enables the separation of interface from implementation
l But doesn’t enforce it
l Unlike COM
l Cope with the skill gap

n Disciplined developers should ALWAYS enforce separation
l Explicit interface implementation
l Never program directly against the object
l Defensive interface querying

22

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Binary Compatibility

n Traditional OO requires clients and servers to be in one
monolithic application
l Compiler bakes into client code address of server entry points

n CO packages code into binary building blocks
l Replace and plug new binary versions of server
l Implies binary compatibility between client and server
l Client must interact at run time with exactly what it expects in

binary layout in memory

Binary Compatibility

n Binary compatibility is the basis for the contract
n Client compiled once against interface or class definition

l As long as contract maintained, server-side implementation
can change

n COM binary compatibility is based on V-Tables
l Memory layout

23

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

.NET Binary Compatibility

n .NET binary compatibility is based on Metadata
l Compilation-time type safety
l Memory layout is determined at JIT-Compilation time
l Late-binding benefits

.NET Binary Compatibility

n Can remove un-used methods
n Can add methods
n Can change order of methods
n Cannot change parameters
n Cannot remove methods that clients expect
n “Late-Binding” behavior lost if use pre-JIT

l Native Image Generator (Ngen.exe)

24

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Language Independence

n In OO client and server must use same language
n In CO server is developed independently of client
n Client interacts with server only at runtime

l Bounded by binary compatibility
l Programming languages should not matter

n Language independence promotes
l Interchangeability
l Adoption
l Reuse

.NET Language Independence

n .NET achieves language independence through CLR
l Intermediate language
l JIT compiler
l Core set of constructs every compilers must support (CLS)

n Some constructs are optional, and reduce language independence
l Unsigned types
l Generics
l Case sensitivity

25

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Location Transparency

n Client and component can be
l In same process
l Different processes on same machine
l Different machines on network
l Across the Internet

n Client code should be independent of actual location of object
l Nothing pertaining to where the object executes
l Same client code should handle all cases of object location

n Client should be able to insist on a specific location
n Ultimately, server-side location transparency is impossible

Location Transparency

n Same client code handles all locations

Machine A

Process 1

Object Client

Process 2

Object

Machine B

Process 1

Object

WWW

Machine C

Process 1

Object

26

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Location Transparency

n Provides ability to develop locally but deploy remotely
l Easier and productive debugging

n Server location affects performance, scalability, security,
manageability
l Different customers have different preferences
l Same customer changes over time

.NET Remoting

n Accessing an object across app domain
l Same process different app domain
l Same machine, different process
l Different machines

n Intra-process calls optimized
l Uses light weight mechanism

n Marshal by ref
l Involves proxies

n Marshaling by value
l Requires serialization

27

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Marshal by Value

Process A

App Domain 1

Num = 3

Process B

App Domain 2

Num = 3

[Serializable]
public class MyClass
{

public int Num;
}

Num = 4

n Once marshaled, the two copies are distinct, and change state
independently

Marshal by Reference

n All access to object across app domain done via proxies
l MBR across process and machine boundary as well

n All references point to same object
n Class must derive directly or indirectly from
MarshalByRefObject

n If object is serializable as well, still marshaled by ref
n Intra-app domain calls use direct access

28

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Marshal by Reference

Process A

App Domain 1

Num = 3

public class MyClass : MarshalByRefObject
{

public int Num;
}

Client

Process B

App Domain 3

Proxy Client

App Domain 2

Proxy

Client

Remoting Architecture

n Interceptors
l Proxy serialize stack frame to message
l Stack builder turns message into stack frame and calls object

n Formatters
l Turn message into binary or SOAP format

ÙBinary is like DCOM

Ù SOAP is like web services

l Can provide custom format

29

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Remoting Architecture

n Channels
l Dispatch message using TCP/HTTP transport protocols
l Can provide custom channel
l Object can accept calls on multiple registered channels

n Can combine any format with any channel
n Almost all points in the architecture provide hooks and sinks

l Extensibility
l Security
l Proprietary

Remoting Architecture

Proxy
Formatter

Binary/SOAP

Object

Client

Channel
TCP/http

Channel
TCP/http

MethodCall()

Stack
Builder

Message

Message

MethodCall()

Formatter
Binary/SOAP

Client App Domain

Host App Domain
1 2

3
4

5

6

30

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Location Transparency in
.NET Remoting

n True location transparency only with new
l Config file required
l Registration sets up channels and identifies types to load

remotely
n GetObject() does not require object registration

l Only server activation
l No location transparency

n Leasing and sponsorship requires client programming

Concurrency Management

n Component can be used by multiple threads
l Vendor must assume it will
l Vendor must provide synchronization

n Component can contain its own lock
l Promotes deadlocks
l Inefficient use of

system resources

R1

T1

R2

T2

Owns

Access
attempt

31

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Concurrency Management

n The component technology must provide concurrency
management service
l Participate in application-wide synchronization mechanism
l Even when components developed separately

.NET Concurrency Management

n .NET provides concurrency management via synchronization
domains
l Only for context-bound objects
l Undocumented/poorly documented out of the box

n .NET supports manual synchronization

32

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

App Domain & Context

Process A

AppDomain A

Process B

AppDomain B AppDomain C

Context 1

Context 2

Context 3

Context 4

Context 5

Context Synchronization

n [Synchronization] attribute
l System.Runtime.Remoting.Contexts
l Only for context-bound objects

n .NET associates object with a lock
l Locks whole object during access

n Easiest synchronization mechanism to use
n A modern synchronization option that formally eliminate

synchronization problems and the developer’s need to code
around them

33

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Context Synchronization

using System.Runtime.Remoting.Contexts;

[Synchronization]
public class MyClass : ContextBoundObject
{
public MyClass(){}
public void DoSomething(){}
//other methods and data members

}

n .NET intercepts calls coming into context
l Tries to acquire lock (blocks if own by another thread)
l Unlocks on the way out of context
l Queue pending callers

n Only for context bound objects or a derivative

Synchronization Domain

n .NET could have allocated a lock per object, but that is inefficient
l Often, objects can share lock
l Shared locks reduce deadlocks likelihood

n Objects that share a lock are said to be in a Synchronization
Domain
l Each SD has one lock
l All objects in same context share SD
l Within SD, concurrent calls from multiple threads are not

allowed
n SD is orthogonal to context, but limited to App Domain

34

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Process

AppDomain A

Context 1

Context 2

Context 3

Context 4

AppDomain B

Context 5

Context 6

Synchronization Domain

Configuring Synchronization

public class SynchronizationAttribute : ContextAttribute,
IContextAttribute,
IContextProperty,
IContributeServerContextSink,
IContributeClientContextSink

{
public static const int NOT_SUPPORTED;
public static const int REQUIRED;
public static const int REQUIRES_NEW;
public static const int SUPPORTED;

// Constructors
public SynchronizationAttribute();
public SynchronizationAttribute(int flag);
public SynchronizationAttribute(int flag, bool reentrant);
public SynchronizationAttribute(bool reentrant);
//Other methods and properties

}

n Configures SD for object using Synchronization attribute
constructor

35

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Configuring Synchronization

n Example:

n Default is REQUIRED, so these are equivalent:
[Synchronization]
[Synchronization(SynchronizationAttribute.REQUIRED)]
[Synchronization(SynchronizationAttribute.REQUIRED,reentrant)]
[Synchronization(reentrant)]

[Synchronization(SynchronizationAttribute.REQUIRED)]
public class MyClass : ContextBoundObject
{}

Configuring Synchronization

n Objects reside in SD of:
l Creating client (shares lock with creator)
l New SD (has its own lock)
l No SD (no lock, concurrent access allowed)

n SD determined at creation time based on configuration and client SD

36

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Configuring Synchronization

n Example:

Client Required

Required

Supported

Not
Supported

Requires
New

Synchronization Attribute Values

n Not Supported
l Object never participates in synchronization, regardless of

status of creator
l Object must provide synchronization
l Avoid it

n Supported
l Object participates in SD if it exists
l More difficult to code (have to handle case of concurrent

access with no synchronization)
l Used when need to propagate SD

37

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Synchronization Attribute Values

n Required
l All calls to object are synchronized
l If creator is synchronized, object shares creator’s lock
l If the creator is not synchronized, .NET assigns new lock

n Requires New
l Object must participate in a new SD, distinct from creator‘s

SD
l Makes calls between your object and creator synchronized

[Synchronization] Pros/Cons

n Pros:
l Very easy to use
l Formal way of reducing synchronization issues
l Productivity oriented

n Cons
l Only for context-bound objects
l Not throughput oriented

ÙMacro lock

l No synchronization for static fields and methods
l Not remoted

38

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Versioning Support

n Clients and components must evolve separately
l Vendor should deploy new versions (or just fixes) without

affecting existing clients
l Client developers should deploy new versions and interact

with older components
n The component technology should support versioning

l Allow components to evolve along different paths
l Allow for side-by-side deployment
l Should detect incompatibility as soon as possible

.NET Versioning Support

n Assemblies can be private or shared
n A private assembly resides in the app directory
n A shared assembly is in a known location, called the global

assembly cache (GAC)

n Shared assembly used for:

l Sharing

l Side-by-side execution

39

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

.NET Versioning Support

n Shared assemblies must have a unique name
l Called Strong Name

n Strong name authenticates assembly’s origin and identity
l Shared assembly implies trust

n Strong name cannot be generated by a party other than the
original publisher

n Strong name is based on public/private keys pair

.NET Versioning Support

n Digitally signs the assembly to verify origin
l Encrypt manifest using the private key
l Append signature to manifest
l Incorporated public key into the assembly

n To verify authenticity
l .NET loader generates the hash
l Decrypts the manifest-stored hash
l Compare

n Can only call signed assembly from within signed assemblies
l Friendly name assemblies can call both

40

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Resolving Version

n When trying to use a shared assembly
l Possible many versions of the same assembly in the GAC

n Client always gets assembly with exact version match
l Can provide custom policy

n Developers must be disciplined
l Release procedures

Resolving Version

n Private assembly can be strongly named
n .NET ignores version of private assemblies with friendly name

only
n .NET enforces version compatibility of private assembly with

strong name

41

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Custom Version Policy

n Application can provide version binding policy
l Override default policy
l For shared and private assemblies

n Can deploy machine-wide policy
n .NET configuration tool

l MMC snap-in

Custom Version Binding

n Binding policy:

42

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Custom Version Binding

n Codebase policy:
l Redirect to new location

.NET Versioning Support

n Versioning support only for strongly-named assemblies
n Side-by-side in the GAC
n Default policy enforces compatibility
n Can deploy custom application policy

l Typically by application vendor
n Can deploy custom machine-wide policy

l Typically by component vendor

43

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Component-Based Security

n Windows security is user-oriented
l OS viewed as one monolithic chunk

n A user can either do something or not at all
l No granularity (do one thing, but not the other)

n Users vulnerable to attacks
l Downloads
l Email viruses
l Worms
l Spoofing
l Luring attacks

Component-Based Security

n Today, applications and OS are component-based
n Need a component-oriented security model

l What a component is allowed to do
l No “all or nothing”
l Component origin

n Without coupling components and client applications
n Compliments user-based security

44

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

.NET Code-Access Security

n Intricate administrative permissions schema
n Programmatic permissions support
n Role-base security

l Optional – custom principal

Security Permission

n An individual grant
l Grants access to a resource
l Perform operation

n Examples
l File I/O permission

ÙRead, write append data to a specific file

l UI Permission
ÙAccessing windows, top level windows, clipboard access

l Reflection

45

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Permissions

n .NET defines 19 permission types
l Environment variables n Web access
l File dialog n Performance counter
l File IO n Directory services
l Isolated storage n Message queue
l Reflection n Service controller
l Registry n OLE DB
l UI n SQL client
l Security n Event log
l DNS n Sockets access
l Printing

Permission Sets

n Individual permission is specific
l Access only C:\Temp
l Access all files
l Can display windows

n Permission set is grouping of permissions

l Access read only to all of C:\ and can display windows
n Standard named permission sets

l Nothing n Execution n SkipVerification
l Internet n LocalIntranet
l Everything n Full Trust

n Can define custom permission sets

46

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Security Evidence

n Permissions granted based on evidence
n Evidence is some form of proof assembly provides to substantiate

identity
l Origin-based evidences
l Content-based evidences

n Origin-based evidence
l Application Directory, Site, URL, Zone

n Content-based evidence
l Strong name, Publisher certificate, Hash

Code Groups

Code Group

Permission Set

Permission
B

Permission
CEvidence

Permission
A

n Binding of a single permission set with a single evidence

47

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Security Policy

Code Group A

Code Group C

Code Group B

Code Group E

Code Group D
Granted

Not granted

n Collection of code groups
n Permissions granted by a policy is the union of all the individual

groups satisfied

Security Policy

Security Policy

n All policies must concur on allowed permissions
l Actual permissions granted is intersection of the permissions

granted by all policies

48

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Managing Security Policies

n Manage permission using .NET configuration tool

Security Policy

n .NET defines three policies
l Enterprise
l Machine
l User

n Each policy defines code groups
n Each policy defines its own

permission sets
n Can customize policies

l Demo

49

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

.NET Security

n When assembly loaded
l Assembly classified to code group in policies
l Intersecting policy calculated

n Framework classes have built- in security demands
l Indicate type of operation requested
l Indicate security action and time

n When assembly tries to perform operation
l Granted access to resource

or
Security exception

.NET Security

n CLR must verify permission of chain of callers
l Not good enough if component has permission but not

upstream caller
l Verify using stack walk

n Resource demand for security permission verification triggers
stack walk
l If even one caller does not have permission -> security

exception
n Administrative security is independent of actual component code

50

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Security Architecture Benefits

n User gets consistent experience
l Files, scripts, exe, controls…
l No need for runtime user decision

n One place for policy administration
n Developer focuses on business logic

l .NET provides security

.NET Adherence to CO Principles

n The software development crisis
l Skill gap
l Developers lack effective component-oriented design skills
l Little or no formal resources
l Aggressive deadlines
l Tight budgets
l Putting off fires

n Skill gap most apparent in adherence to component development
principles
l Object-oriented concepts are easier to understand and apply

51

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

.NET Adherence to CO Principles

n Primary goal of .NET to simplify development and use
of binary components

n .NET does not enforce some of the core principles
l Separation of interface from implementation
l Allows binary inheritance of implementation

n .NET enforces few of the concepts and enables the rest
l Catering to both ends of the skill spectrum

.NET Adherence to CO Principles

n Report card

52

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

©2003 IDesign Inc. All rights reserved

.NET Component-Oriented
Development Process

Juval Löwy
www.idesign.net

Outline

n Overview
n Project planning
n Estimation and tracking
n Documentation
n Requirement management and traceability
n Configuration management
n SQA
n Other issues

53

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Objectives

n Describe only the way key process areas are affected by
component oriented product
l Each area has much more to it

n Process is compatible with CMM level 2-3
n Suitable for small teams (<7)

l Scaleable ?
n Everything described is practiced in real life
n Metrics and the charts are normalized projects data

Project Planning

n Staffing
n Product life cycle
n Components integration plan
n Component life cycle

54

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Staffing

n Is this a good design?

Staffing

n Is this a good design?

55

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Staffing

n Is this a good design?

Staffing

n Is this a good design?

56

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Staffing

n Balance number of components with development effort

Number of components

C
o

st
 o

r
E

ff
o

rt Minimum Cost

Cost / Component
Cost to

Interface

Staffing

n Not having a skilled architect is the #1 technology risk
l Rather than the technology itself !

n Requirements analysis and architecture are contemplative time
consuming activates
l More firepower does not expedite
l Single architect usually suffices
l In large projects, have a senior architect and a

junior/apprentice
n Assign a component to individual developer (1:1)
n Assembly boundary is team boundary

57

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Staffing

n Interaction between team members is isomorphic to interaction
between components

n A good design (minimized interactions, loose coupling,
encapsulation) minimizes communication overhead

n Both ways !

Staffing Distribution

n Get an architect
n Architect breaks product into components
n Avoid up-front staffing, crude decomposition and assignment

1

2

3

4

5

Oct- Nov-Sep-Jan- Feb- Mar- Apr- May- Jun- Jul- Aug-

Calendar Months

S
ta

ff

Construction

CM and Sys. Testing

Management

Architecture

Marketing/Product management

58

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Product Life Cycle - Staged Delivery

Preparation

Requirement & architecture

Interface compatible
emulator

Basic
capabilities

Setup, logging,
configuration editor

UI elements

Release

Stage 1

Stage 2

Stage 3

Stage 4

Components Integration Plan

n Derived from components dependency graph

n Start bottom-up

n Avoids “big-bang” syndrome

n Risk reduction oriented

l Incompatibility discovered early

n Daily builds and smoke tests to test evolving system

l Regression if needed

n Incrementally build a system

l Provide a tested working system at each functional increment

59

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Components Integration Plan

HW

DA

Client App

Emulator

Setup
Queue

Command

S1

S2

S3

S5

System

Handler

Config

01/12

01/28

02/01

03/22

01/13

04/05

05/05

S4

Component Life Cycle

SRS SRS
Review

Detailed Design
(standard documentation)

Design Review

Some
Construction

STP

ConstructionTest Client

Code
Review

Integration
Testing

60

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Component Testing

n EVERY component has its own testing environment
n Visible signs of progress to management
n Spice up “boring” testing
n Test all method calls, call backs and errors (white box)
n Fall back to isolate problems
n Assumption - no need to test the test SW
n System level test SW is provided to customer as well

Component Testing

61

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Estimation and Tracking

n Component-based effort estimation
n Component-based earned value tracking

There is No Silver Bullet

n .NET projects do not take less than
Windows DNA projects
l Marginal overall improvement

in time to market
l Applications are more complex

62

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Component-Based Effort Estimation

n Use estimation tools
n Team members participate in estimation
n Itemize lifecycle of all components

l Do not omit:
ÙLearning curves

ÙTest clients
Ù Installation
Ù Integration points
Ù Peer reviews
ÙDocumentation

Component Based Effort Estimation
Requirements List and Resouces Allocation
Owner Status % Remainder Planning Construction System Size by LOC

% Completed and Design (code, test) testing
Perform market research JL 100% 0% 30
SW development plan JL 75% 25% 12
Prototype SW interfaces JL 100% 0% 7
SRS JL 75% 25% 15
Test plan QA 0% 0% 10
Configuration management plan JL 50% 50% 5
Build environment JL 100% 0% 10
Requirements management JL 25% 75% 15
detailed estimation JL,FN 25% 75% 2
User manual MW 25% 75% 30
Architecture JL 75% 25% 35
SW Detailed design JL 25% 75% 20
Serial communication JL 75% 25% 30 10 1355
Emulator CP 0% 100% 10 5 810
Commands queue JL 25% 75% 20 10 1236
Modular handler CP 0% 100% 20 10 2300
Error handling CP,JL 0% 100% 15 5 500
Error logging CP 0% 100% 10 3 500
Installation program KD 0% 100% 15 30 20 2500
Configuration editor KD 0% 100% 15 30 15 3500
Integration and testing QA, KD, CP,JL 0% 100% 60 140
Client application KD 0% 100% 15 30 10 2000
Commands CP 0% 100% 5 10 5 820
Save Type CP 0% 100% 3 2000
Release activities QA, KD, CP,JL 0% 100% 60 60
Project Management FN,JL 5% 95% 81
Total by Category (man day) 272 378 293 943
Total by category (man month) 13.6 18.9 24.4 56.9
Total (man month)
Total - Zise 17521.0

Training 40
C++ 120
NT 20
MFC 120
Win32 Interface 120
COM 240
Advance COM 240
Domain Knowledge 120

Total Training 1020
Total Training (man-month) 51

Stage 3
UI Elements 30 40 20
Wafer ID 10 15 10
Carried ID 10 15 10
Wafer Management 30 40 20
Advanced error logging 10 20 5

Total 4.3 6.2 3 . 1

63

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Earned Value Tracking

n Assign value of work item for the completion of component
n Compare earned value (sum of all accomplished activities across

components) against effort spent
n Can predict completion date and costs

Earned Value - Example

Activity Effort Estimated Earned Value

Architecture 40 days 20 %

DB Comp. 30 days 15 %

UI Comp. 40 days 20 %

Control comp. 20 days 10%

Queue Comp. 40 days 20 %

System Testing 30 days 15 %

Total 200 days 100 %

64

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Earned Value - Example

n When requirements, DD and test plan completed, the component
is 45% done

Activity Phase % Completed
Detailed Requirement 15

Detailed Design 20

Test Plan 10

Construction 40

Documentation 15

Earned Value - Example

n Finding accumulated earned value:

Activity Effort Estimated Accomplished Earned Value

Architecture 20 % 100 % 20 %

DB Comp. 15 % 75 % 11.25 %

UI Comp. 20 % 45 % 9 %
Control
Comp

10 % 0 % 0 %

Queue 20 % 0 % 0 %

Sys. Testing 15 % 0 % 0 %

Total 40.25 %

65

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Earned Value - Example

Earned Value - Example

Microsoft Excel
Worksheet

66

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

©2003 IDesign Inc. All rights reserved

Documentation

The SDD

n External documentation
n Contains

l Project overview
l Operational concept
l Assumptions, sequence of executions
l All components and interfaces
l Scenarios and interactions
l Sample code

n Available on project web site
n Uses framework standard format

Compiled HTML
Help file

67

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

The SDD

n SDD should contain context maps
l Concurrency
l Security
l Transaction

n Context maps are some of the most important items you will
design and document

DB

Client Obj
Transaction

Obj Obj

DBDB

Process

AppDomain A

Context 1

Context 2

Context 3

Context 4

AppDomain B

Context 5

Context 6

Adobe Acrobat
Document

68

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

©2003 IDesign Inc. All rights reserved

Requirement Management and
Traceability

Requirement Management and Traceability

n Base Software Requirement Spec (SRS) on use cases
n Describe use cases graphically in UML activities diagrams

l The required dynamic behavior of the system

69

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Requirement Management and Traceability

n After breaking the product to components, factor interfaces using
UML interaction diagrams:

n Interaction diagram per use case/activity diagram

tim
e

anObject anotherObject

op
er

at
io

n
ac

tiv
e

on
 o

bj
ec

t

new Object

(instantiation)

Operation()
DoOperation()

(operation onself)

Requirement Management and Traceability

SDD

Architecture

Interfaces, Classes

Use cases

Dynamic Aspect Static Aspect
Customer/
Marketing
Domain

Derived req.s

ti
m

e

anObject anotherObject

op
er

at
io

n
ac

tiv
e

on
 o

bj
ec

t

new Object

(instantiation)

Operation()
DoOperation()

(operation onself)

Code

Interaction diagrams

70

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

©2003 IDesign Inc. All rights reserved

Configuration Management
and Source Control

Source Control

n Each assembly kept separate
l Standard folders structure
l History, branches
l Component documents
l Client and test software

n Daily builds (automated) and
daily smoke test

n Integrated with VS.NET
n Connected to project web site

l Some component are available separately

71

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Build Environment

n Customize it !
n One container solution, grouping many sub projects
n Automate activities:

l COM export and registration
l Installing in the GAC
l Setup projects

n One click to build, set up, deploy, test

©2003 IDesign Inc. All rights reserved

SQC

72

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

SQC

n Test plan per component and for the system
l Based on the component SRS and use cases

n EVERY component has its own testing environment
l Invoke all methods, call backs and error handlers (white box)

l Fall back to isolate problems
l Testing performed by the developers

n SQC performs
l System level testing only
l Daily builds and smoke test (automated)

0 Tolerance to Defects

n At any given time, a component has zero bugs <Period>
l Components must be rock solid
l Added inherit complexity in component-based application

n Defensive programming
l Assert every assumption

n Component is stand alone
n Log files

l Interleaved entries
n Average lifespan of a bug is a few minutes

XX

73

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Logbook

n Logbook/flight recorder
l Verbosity levels

Other Issues

n Simulation and Emulation
n Training
n Peer Reviews
n Metrics
n Visibility to Management

74

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Simulation and Emulation

n Every component has both simulator and emulator
l Emulation returns “success” on every call, easy to develop
l Simulator is as real as the component

ÙManages state

n Both are useful
l Development - give your client the interfaces early
l Debugging
l Demo
l Not changing the DB, access the HW, etc.
l Trigger rare conditions, errors
l Automate smoke tests

n Should be able to switch modes programmatically

Training

n Internal training sessions
n External courses
n Staff mentoring
n Each SW engineers should have:

l A pile of books to read (7”)
l Articles

n Emphasis on deductive knowledge sharing

75

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Peer Reviews

n What to review
l Component requirement reviews
l Component test plan reviews
l Component design reviews
l Code reviews (ALL the core code is reviewed)

n Techniques
l Formal review
l Walk through
l Buddy programming

n High degree of mutual involvement
l Strict coding standards are a necessity
l Team spirit and vision for producing highest quality work

Metrics - Code Categories

48%

2%1%6%

34%

9%

Source Code

Interface Definition

Misc (Registry, metrics, build…)

Installation Scripts

Test Environment Source Code

Sample Client Program

76

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Metrics - Code Growth

V1.0 Code Growth by Category

0

20000

40000

60000

80000

100000

120000
11

/1
9

12
/1

9

1/
19

2/
19

3/
19

4/
19

5/
19

L
in

es
 o

f
C

o
d

e

Install & Setup

Misc

Interface Definition

Example Client Code

Test Code
Components code

Management Visibility

n Risk management

n Frequent “push” status reports

l Components integration points are your mile stones

l Earned value charts

n Frequent demos (component testers)

77

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Summary

n You cannot successfully apply .NET without a mature process
supporting you

n Process is not time consuming or difficult
n Your team will be highly productive
n High degree of discipline is required

l Be a “believer”
n Quality leads to productivity - you do not spend time debugging !

©2003 IDesign Inc. All rights reserved

.NET Current and Future Trends

78

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Streaming Windows Forms

n Apply web share on a folder
n Send the link!

Streaming Windows Forms

n At client machine, application placed in Download Assembly
Cache
l .NET remembers origin
l Assembly executes with appropriate security policy

79

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Streaming Windows Forms

n Death of the browser as front-end
n Can still be a web application

l Use web services to connect to remote server

Feature Windows Forms ASP.NET
Rich UI + -

Ease of development + -

Easy deployment + +

Web access to server + +

Multi platform support - -

?

C# and VB.NET Future Trends

Application Functionality

Skill

VB6

.NET

C++ MFC ATL COM

80

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

C# and VB.NET Future Trends

n First to market often at expense of long-term maintenance
l Requires different skills of developers and managers

n VB.NET will evolve to cover gap in skill/functionality curve
l Advanced wizards
l Classes
l Changes to the framework
l Task automation tools
l Fastest edit-test-continue cycle
l Productivity

ÙNo need for unsafe code, generics, etc

Op
ini

on

C# and VB.NET Future Trends

n First to market often at expense of long-term maintenance
l Requires different skills of developers and managers

n VB.NET will evolve to cover gap in skill/functionality curve
l Advanced wizards
l Classes
l Changes to the framework
l Task automation tools
l Fastest edit-test-continue cycle
l Productivity

ÙNo need for unsafe code, generics, etc

81

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

C# and VB.NET Future Trends

n C# will evolve to best serve the Enterprise market
l Amortized over 5 or 7 years of lifecycle, time saved using

RAD tool is insignificant
l Real question is cost of long-term maintenance

Ù Proper design and architecture
ÙQuality of components
ÙOverall quality and extensibility
ÙAbstractions
ÙComponent and interface factoring

l Generics, iterators, tools

.NET Future Roadmap

n .NET 1.0 timeline
l Alpha - 07/00
l Beta 1 - 11/00
l Release - 02/02

n .NET 2.0 announced timeline
l Alpha - 07/03
l Beta 1 - ?
l Release - 2004

82

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

.NET Future Roadmap

n .NET 1.0 timeline
l Alpha - 07/00
l Beta 1 - 11/00
l Release - 02/02

n .NET 2.0 announced timeline
l Alpha - 07/03
l Beta 1 - 11/03
l Release - 02/05

Spe
cu
la

tio
n

.NET Future Roadmap

n .NET 1.0 timeline
l Alpha - 07/00
l Beta 1 - 11/00
l Release - 02/02

Wil
d

Spe
cu
la

tio
n

n .NET 2.0 announced timeline
l Alpha - 07/03
l Beta 1 - 11/03
l Release - 02/05

n .NET 3.0 timeline
l Alpha - 07/06
l Beta 1 - 11/06
l Release - 02/08

83

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

.NET Future Roadmap

n .NET 2.0 (2005)
l Streaming applications
l Native WSE support

Ù Security, transactions, messaging, concurrency

l C# 2.0
ÙGenerics, iterators, partial classes, anonymous methods

l VB.NET 2.0
ÙRAD-ness, VB6 like tool

l Facelift for the application frameworks
l SQL Server as a host

ÙYukon

.NET Future Roadmap

n .NET 3.0 (2006-2008)
l Grand unification theory
l Managed OS

ÙLonghorn client/server OS

l Operation system for the Web
ÙGXA (2006/2008)

84

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

©2003 IDesign Inc. All rights reserved

.NET 2.0 ClickOnce

Brian Noyes
www.idesign.net

The Challenge

n Conflicting goals:
l Delivering richest possible experience for users
l Delivering applications and components to user’s desktop with

minimal effort and cost
l Keeping applications and components up to date
l Supporting disconnected / mobile scenarios

n Deployment and maintenance are significant cost factors in every
application lifecycle

85

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

The Solution

n ClickOnce
l Windows rich client deployment technology
l .NET Framework 2.0 Feature
l Addresses all conflicting goals

ClickOnce Concept

n Single action to execute an application
l Clicking a link or shortcut

n If application not on user’s machine, download
n Once application is on user’s machine, run in security sandbox
n If new version placed on server, automatically or manually

updates
n Allow offline/disconnected use

86

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

ClickOnce Features

n Application and components deployment via
l Web
l Network file share
l Removable media (i.e. CD)

n Simple end-user installation
n Trustworthy deployment and execution

l Code-access security protected
l Security policy deployment

n Updates and versioning
n Disconnected mode support
n Bootstrap installation

Designing for ClickOnce

n Line-of-business rich client application
l Including logic/resource components
l Client machine requires .NET 2.0

n Connecting to business or data services:
l Web Services
l Database connection
l Remoting
l Enterprise Services
l Indigo

n Application deployment and updates
l Can be any web platform - .NET not required

ÙBut easiest with .NET

87

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

ClickOnce in Action

Client

File or Web Server

App / Web / DB
server

<soap>
<foo>

…

DB

xxxxxxxxx

1.0

1.0

Launch App

2.0

xxxxxxxxx

2.0

BLL

Scaling Out with ClickOnce

Client

File or Web Server

App / Web / DB
server

<soap>
<foo>

…

DB

xxxxxxxxx

1.0

Launch App

BLL

88

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

ClickOnce Summary

n Enables rich client replacement of web apps in most cases of
distributed applications
l Better user experience
l Faster time to market
l Easier maintenance and TCO
l Secure installation and execution
l Web access to server
l Flexible deployment / update options

n Consider ClickOnce capabilities for future Intranet applications

©2003 IDesign Inc. All rights reserved

Indigo

Heinrich Gantenbein
www.idesign.net

89

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Indigo Goals

n Unify remoting component technologies
l .NET Remoting
l Enterprise services
l Web services (including WSE)
l Messaging (MSMQ, WS-Conversation)

n Provide for all components (including local)
l Efficient, easy atomic transactions
l Unified serialization architecture

n Compliance with WS-Standards and GXA

Distributed Component Stack

CORBA I, T, Q, A

JAX-RPC I, A

RMI A

EJB I, T, Q, A

JMS T, Q, A

JDBC/JDO T

J2EE

DCOM T, Q, A

ASMX I, A

Remoting A

Enterprise Svc I, T, Q, A

Messaging T, Q, A

ADO.NET T

.NET Today

Message Bus I, T, Q, A

Messaging T, Q, A

ADO.NET T

.NET w. Indigo

I= interop, T=transaction, Q=queuing, A=async

90

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Indigo Reliable Messaging

n Datagram
l No reliability

n Request/response
l Remoting

n Dialog
l Complex and reliable
l Transient
l Persistent with transaction
l Persistent without transaction

Indigo Transaction Support

n Local transaction
l On demand promoted to distributed
l Supports WS-AT

n Distributed transaction
l Local or wide area

91

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Indigo Security

n Security
n Policy
n Trust
n Secure conversation
n Privacy
n Federation
n Authorization

Port

Indigo Programming

Service

Typed
Channel

Channel Channel Channel

Port Extension

Transport

Existing
Stack

Typed
Channel

Typed
Channel

Port Extension

Transport
MessageFormatter MessageFormatter

…

…

…

…

…

…
…

…GXA Wire Format Non-GXA
Wire Format

92

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

Indigo Programming

n Server Code

n Client Code

[DatagramPortType(Name="Hello"),Options=DialogPortTypeOptions.InOrder]
public class Hello
{

[ServiceMethod]
[Transacted(AutoBegin.Required)]
[SecureMethod(Role="HelloServiceClient",Encryption=true)]
public string Greeting(string str)
{

return "Hello" + str;
}

}

HelloService service = new HelloService();
service.Greeting("IDesign");

Indigo Benefits

n Simple, productive programming model
l Attributes
l XML configuration
l Select model

Ù Server client model (similar to remoting)
ÙMessage oriented model (similar to queuing)

n Extensible
n Interoperable
n Better serialization architecture

93

IDesign Inc. www.idesign.net

©2003 IDesign Inc. All rights reserved

©2003 IDesign Inc. All rights reserved

Q&A

Resources

n Programming .NET components
l By Juval Lowy, O'Reilly 2003

n www.idesign.net
l Code library
l Coding standard

n .NET Master Class
l 3-4 annually
l Upcoming events on

www.idesign.net

